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1 Introduction

Starting with Keser and van Winden (2000) and Fischbacher et al. (2001), economic research
has pointed out the role of conditional cooperation. Agents who follow this behavioral pattern
condition their cooperation on the cooperativeness of others respectively on their beliefs about
others’ behavior – they “are willing to contribute the more to a public good, the more others
contribute” (Fischbacher et al., 2001, p.397). There is now a solid body of empirical evidence
from lab experiments as well as from field studies, which documents the prevalence of conditional
cooperation.1 Motivated by this evidence, several theoretical models have emerged, which are
capable to explain conditional cooperative behavior. The question under which circumstances
conditional cooperation – respectively the preferences inducing it – survives evolution, has gained
little attention. The main concern of this paper is to address this question.

One possible way to capture conditional cooperation is based upon social norms.2 Social
norms are rules of conduct, which are enforced by internal or external sanctions (Coleman,
1990). As the sanctions for a norm deviation are harsher the more people adhere to the norm,
a social norm for cooperation can trigger conditional cooperative behavior (Rege, 2004). The
present analysis incorporates such a concept of social norms into a model of voluntary public good
provision in a large society. Within this framework we study the evolution of a cooperation norm
and the coevolution of behavior. This allows us to discuss the prerequisites for the emergence
of conditional cooperation. Our analysis thereby provides several novel elements.

First of all, the strength of the social norm, respectively the impact of norm-enforcing sanc-
tions, depends – next to the level of norm compliance in the society – on an individual specific
level of norm sensitivity: Some agents suffer more from sanctions than others do. For a given
distribution of norm sensitivity in the population, we can then endogenously derive the equi-
librium level of cooperation. Similar as in other models of social norms (e.g. Lindbeck et al.,
1999), there is scope for a multiplicity of equilibria: Society could either coordinate on equi-
librium states with a strong social norm and far-reaching cooperation or on states with weak
norm-enforcement and widespread free-riding.

In a next step, we study the evolutionary process of norm adaptation. So far, the literature
has mainly focused on actual behavior as the determinant of an endogenous norm strength (see
e.g. Azar, 2004; Rege, 2004). In addition to this channel, we also consider the individual norm
sensitivity as an endogenous factor accounting for the power of a norm. We model the evolution
of the norm sensitivity as an indirect evolutionary process.3 Individuals learn about the social
status of agents with heterogenous preferences, i.e. different levels of norm sensitivity. Status is
determined by the economic payoff from free-riding and cooperation as well as from the norm-

1For recent field experiments compare e.g. Frey and Meier (2004), Martin and Randal (2005), Shang and
Croson (2005). Gächter (2006) provides a survey of further evidence.

2Other theoretical approaches which account for conditional cooperation are theories of fairness, conformity,
inequity aversion and reciprocity, surveyed in Fehr and Schmidt (2006).

3Compare e.g. Güth (1995), Bester and Güth (1998), Fershtman and Weiss (1998) for further indirect evolu-
tionary studies. A comprehensive overview of standard evolutionary game theory is provided in Weibull (1995).
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enforcing sanctions. Depending on whether these sanctions are strong enough to outbalance
the cost of cooperation, either the pro-social or the selfish behavior dominates in terms of
social status. Accordingly, either agents with higher norm sensitivities (who tend to cooperate)
or agents with lower norm sensitivities (who will free-ride) get more frequently imitated. In
this vein, adaptation endogenously forms the distribution of the norm sensitivity in the society.
Individual behavior, the level of cooperation within the population and the associated strength of
sanctions evolves indirectly, along with the endogenous change in preferences. In an evolutionary
equilibrium, the social outcome is shaped by preferences and – at the same time – the social
outcome shapes these preferences.

We first discuss the evolutionary process for the case where agents adapt to a homoge-
nous environment associated with one particular equilibrium state of the public good game.
Under certain conditions, there exits an evolutionary equilibrium with a distribution of norm-
sensitivities such that free-riders and cooperators coexist. This equilibrium, however, turns out
to be instable. Typically, adaptation will induce a decline in the norm sensitivity and coopera-
tion would break down. In the evolutionary equilibrium the social norm has eroded and nobody
contributes to the public good.

This result changes, once we incorporate the multiplicity of equilibria from our basic model
into the analysis. We focus on the case of a heterogenous environment, in the sense that the
population faces an equilibrium state with strong norm-compliance as well as a state with
widespread norm violations, where both states are supported by one given distribution of pref-
erences. Agents then interact in ‘cooperative’ and ‘non-cooperative’ situations, with a strong
status-impact of sanctions in the former and a weak norm in the latter environment. In this
setup, we observe three different types of behavior: Free-riders, who violate against the norm
in both situations, (unconditional) cooperators, who always comply with the social norm, and
finally conditional cooperators. These agents cooperate in the ‘good’ state, where many others
follow the norm, but defect in the ‘bad’ state, where a majority free-rides. In the environment
with a strong social norm, conditional cooperators avoid harsh sanctions, making them more
successful than free-riders. In the environment where the norm is weak they free-ride and earn a
higher status payoff than unconditional cooperators. Hence, the conditional strategy dominate
both unconditional strategies in terms of social status. Evolutionary adaptation will favor con-
ditional cooperators, since they react flexibly to their social environment. We can characterize
conditions, under which this dominance of conditional cooperation forms a stable evolutionary
equilibrium.

While there are several indirect evolutionary approaches explaining the emergence of pro-
social behavior (e.g. Bester and Güth 1998; Fershtman and Weiss 1998), only Mengel (2006)
discusses conditional cooperation. Her paper studies the impact of migration on an internalized
norm for cooperation. For some degrees of population viscosity – which can be neatly linked to
the level of integration in a society – she finds a stable evolutionary equilibrium, where norm-
sensitive and norm-insensitive agents coexist. Similar as in our study, norm-sensitive individuals
behave conditionally cooperative: they start to defect, if norm-insensitive agents become more
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frequent in the population. This protects conditional cooperators from getting exploited and
supports their evolutionary success. The result as well as it’s intuition is quite similar to our
findings in the case of heterogenous environments. In Mengel’s analysis, conditional cooperation
is a response to the heterogeneity in selfish respectively norm-guided interaction partners. In our
model, it is the heterogeneity in social environments related to different equilibrium states, which
supports the conditional behavior. This structural similarity in the results suggests, that the
role of heterogenous environments as a driving force in the evolution of conditional cooperation
provides a robust finding which generalizes to different model frameworks.

Finally, our paper also contributes to the literature by introducing a technique from quanti-
tative genetics, which – to the best of the author’ knowledge – is novel in evolutionary economics.
The method, originally developed in Lande (1976), provides a simple tool to analyze the evolu-
tion of a continuously distributed trait – in our case, the norm sensitivity. We discuss the crucial
assumptions of Lande’s approach and show that our main findings are qualitatively robust to
the application of standard replicator dynamics (see e.g. Weibull, 1995). The fact that we study
the evolution of a continuous distribution of preferences instead of a discrete number of types,
also distinguishes our model from Mengel (2006) and other contributions in the field.

The remaining paper is structured as follows. We first study a model of social norms and
cooperation in a large population. In section 3 we introduce an evolutionary approach from
quantitative genetics. We then apply this method on our model and discuss the evolution of
social norms and cooperative behavior in a homogenous respectively in a heterogeneous envi-
ronment. Section 5 provides a critical discussion of our findings and section 6 concludes.

2 Social Norms and Cooperation

Consider a large society represented by a continuum of individuals [0, 1]. Each agents i chooses
xi ∈ {0, 1}, to contribute to the public good (xi = 1, ‘cooperate’) or not to contribute (xi = 0,
‘free-ride’). The payoff y(xi) for strategy xi is given by

y(xi) = −xic (1)

where c > 0 depicts the costs of the public good contribution. The action xi also determines a
payoff z(xi, n), where n depicts the share of free-riders in the society. This payoff is defined as

z(xi, n) =
(
xi − 1

)
s(n) (2)

where s(n) relates to the sanctions an agent incurs if she violates against the social norm for
cooperation. The origin of these sanctions could in principle be internal, external or a mixture of
both (Coleman, 1990). In the context of internalized social norms, emotions represent an internal
sanctioning mechanism.4 If an agent has internalized a cooperation norm, free-riding would be

4A review on emotions in economic theory is provided by Elster (1998).
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associated with emotions like guilt, remorse or the loss of self-esteem. External sanctions could
be monetary or non-monetary, e.g. related to social disapproval.5 This paper does not study the
origin of these sanctions – i.e. why people engage in (costly) norm-enforcement activities. We
simply assume that there exists a mechanism which induces a certain punishment of free-riders.

Throughout our analysis we employ the following assumption:

Assumption A1: The finite-valued function s(n) is continuously differentiable in n. For
n ∈ [0, 1] there holds s′(n) ≤ 0. Moreover s(0) > 0 and s(n) → 0 for n → 1.

Allowing the sanctions to depend on other agents’ behavior captures the idea that the degree
of norm compliance (co)determines the strength of norm-enforcement and thereby the strength
of the social norm. Following the literature (e.g. Lindbeck et al. 1999, Mengel 2006), we
assume s(n) to be non-increasing in n. A deviant agent is supposed to suffer from weaker
internal sanctions, as free-riding becomes more widespread: one feels less guilty about violating
a norm, the more others do the same. The equivalent is supposed to hold for external sanctions.6

For the case of perfect norm compliance (n = 0), sanctions are strictly positive. In a society
where everybody free-rides, however, the cooperation norm has eroded. The norm-based moral
connotation of ‘wrong’ (free-riding) and ‘right’ (contributing) have vanished and sanctions are
infinitesimal.

2.1 Preferences

Let the preferences of agent i, defined over y(.), z(.) and the public good payoff v(g), be given
by an additive separable utility function

ui(xi, n) = y(xi) + θiz(xi, n) + v(g(n)), (3)

with the individual specific parameter θi ∈ [−∞,∞]. The public good is defined by g = g(n),
g′ < 0, and v′ > 0. We can interpret the parameter θi as the degree of norm sensitivity. While
an agent with θi = 0 is solely concerned about the material payoff from the game, those with
θi > 0 also consider the norm-based payoff in their decisions.7

In a large population, a single decision maker takes n as well as g as given. Hence, agent i

will cooperate iff ui(1, n) > ui(0, n), which holds for θis(n) > c. An individual contributes to
the public good, if the utility loss from the sanction dominates the costs of cooperation. This
implies the threshold

θ̂(n) ≡ c

s(n)
, (4)

which divides society into norm-adhering and norm-breaking individuals. Those with θi >

5For evidence on the role of non-monetary sanctions compare e.g. Masclet et al. (2003). For a theoretical
analysis of social sanctions compare e.g. Fershtman and Weiss (1998).

6Falk et al. (2005) and Masclet et al. (2003) discuss experimental evidence which supports this assumption.
7Agents with θi < 0 hold anti-social preferences, as they derive benefits from a norm-violation. As will become

clear in the following, we only include this latter group for technical convenience. Excluding negative values of θ
would not change any of our results.
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θ̂(n) cooperate, while those with θi ≤ θ̂(n) free-ride. The action xi is then determined by an
individual’s norm sensitivity θi and the share of free-riders n,

xi = x(θi, n) =





0 for θi ≤ θ̂(n)

1 for θi > θ̂(n)
(5)

Note that the threshold θ̂(n) is non-decreasing in n,

∂θ̂(n)
∂n

≥ 0, (6)

since s′(.) ≤ 0. As more agents deviate from the norm, the sanctions associated with a norm
violation become smaller. Hence, an agent who cooperates for low levels of n may turn into a free-
rider for higher levels of n. Those individuals with θi ∈ (θ̂(0), θ̂(1)) condition their cooperation
on the behavior of others. They act as conditional cooperators. Agents with θi ≤ θ̂(0), however,
would always free-ride, irrespectively of other subjects behavior. Allowing for a heterogeneity in
θ, the model therefore captures the two main patterns of behavior typically found in experimental
studies (e.g. Fischbacher et al. 2001).

2.2 Equilibrium

Let the cumulative distribution function of the parameter θ be given by Φ(θ). We assume that
Φ(θ) is continuously differentiable on the interval [−∞,∞]. The corresponding density function
φ(θ) has full support, this is φ(θ) > 0 for θ ∈ (−∞,∞).

Assumption A2: (i) The inverse function of the cumulative distribution is given by Φ−1(n)
for n ∈ [0, 1], with Φ−1(0) = −∞ and Φ−1(1) = ∞. (ii) ∃ n ∈ (0, 1) : Φ−1(n) > θ̂(n).

A social equilibrium state in such a society is given by a share of free-riders n∗, characterized
by the fixed point equation

n∗ = Φ(θ̂(n∗)). (7)

Lemma 1 For any s(n) and Φ(θ) as characterized in A1 and A2(i) there always exists an
equilibrium with n∗ = 1. If A2(ii) holds, there always exists at least one further equilibrium with
0 < n∗ < 1.

Proof. We can rewrite condition (7) as Φ−1(n∗) = θ̂(n∗). From A2(i) we know that Φ−1(1) = ∞
and from A1 follows θ̂(n) →∞ for n → 1. Hence, there always exits an equilibrium with n∗ = 1.
From A1 we know s(0) > 0 ⇒ θ̂(0) > 0 which implies θ̂(0) > Φ−1(0). From this follows that
there must exist at least one n∗ ∈ (0, 1) where Φ−1(n∗) = θ̂(n∗) holds as long as A2(ii) is fulfilled,
since both θ̂(n) and Φ−1(n) are continuously increasing functions defined over the unit interval.

An equilibrium constitutes a self-supporting share of norm-violators: The threshold θ̂(n∗) is
such that the share of agents with θi ≤ θ̂(n∗) is exactly n∗. There always exists one equilibrium
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where nobody contributes, n∗ = 1. The cooperation norm has eroded and everybody free-rides.
Given that assumption A2(ii) holds, the strength of the norm sensitivity is distributed such that
there exists a level of free-riding n, where the maximum level of norm sensitivity among free-
riders, Φ−1(n), is above the cooperation threshold θ̂(n). In this case, the system is characterized
by a multiplicity of equilibria. In addition to the equilibrium with n∗ = 1, there is at least one
equilibrium with a positive share of contributors. A graphical representation of two possible
scenarios is provided in figure 1. While assumption A2(ii) is fulfilled for the example depicted
in panel (a) of the figure, it does not hold for the example in panel (b). In the first case, there
are multiple equilibria, in the latter there is a unique equilibrium at n∗ = 1.

Figure 1: Equilibrium Share of Free-Riders

If the distribution Φ(θ) is common knowledge, society immediately coordinates into one of
the possible equilibria. Alternatively one could consider Φ(θ) to be unknown, but assume that
agents can induce the behavior of other members in society from the public good level. Agents
could then learn about the share of free-riders. As long as players base their next periods’
decision on this share – i.e. cooperate in the next period if θi is above the current period’s
threshold θ̂(n) and free-ride otherwise – society would converge into an asymptotically stable
equilibrium, characterized by

∂Φ−1(n∗)
∂n

≥ ∂θ̂(n∗)
∂n

. (8)

In the following we call an equilibrium n∗ a stable equilibrium state, if (8) holds for n∗. In the
scenario depicted in panel (a) in figure 1, there are two instable (the one with n∗c and another
one at n∗ = 1) and two stable equilibrium states: one with a low level of free-riding n∗a and
another one where free-riding is widespread, n∗b . In panel (b) the only equilibrium, n∗ = 1,
is also stable, since the cumulative distribution approaches the θ̂(n)-curve ‘from below’ (and
therefore condition (8) holds).
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3 Evolutionary Quantitative Genetics

In the following we will study the evolution of the distribution Φ(θ). For this purpose, we
introduce a technique from evolutionary quantitative genetics, first analyzed by Lande (1976).8

The approach offers a tractable method to study an evolutionary process within a continuously
heterogenous population. In particular, it will provide us with one easy to interpret parameter –
the mean value of θ – which characterizes the distribution Φ(θ) in an evolutionary equilibrium.
In section 5 we will discuss the applicability of this technique to our problem as well as the
differences to standard replicator dynamics (see e.g. Weibull, 1995).

Consider a large population which is heterogeneous along one trait α. The trait value is
normally distributed with mean ᾱ and variance σ2, α ∼ N(ᾱ, σ2) ≡ F (α, ᾱ, σ2). To simplify
notation, we denote the distribution function by F (α) and the corresponding density function
by f(α). Let the fitness of an α-type, i.e. an individual with a trait value α, for a given
distribution with mean ᾱ be given by w(α, ᾱ). Allowing individual fitness to depend on the
distribution accounts for frequency dependent fitness. Fitness is called frequency dependent,
if the fitness of an α-individual does also depend on the composition of the population.9 In
economic terms, frequency dependence is given if one group of agents – respectively the strategy
played by these individuals – creates an externality on other agents’ fitness.10

Within one generation, the change in the mean trait value in response to selection is defined
as

∆ᾱ = ᾱs − ᾱ, (9)

where ᾱs, the mean trait value after selection, is given by

ᾱs =
1
w̄

∫
αw(α, ᾱ) dF (α) (10)

and w̄, the mean fitness of the population, is

w̄ =
∫

w(α, ᾱ) dF (α). (11)

The selection described in (10) follows a standard replicator dynamic. While the initial frequency
of a type was f(α), the post-selection frequency of this type, w(α,ᾱ)

w̄ f(α), will be higher for types
with above-average fitness. Hence, in the computation of ᾱs, more successful types will get more
weight than less successful types.

The analysis so far describes selection within one generation. In order to address the inter-
generational evolution of the trait α, Lande (1976) introduces the following structure of re-

8Compare Falconer and Mackay (1995) and Roff (1997) for an introduction to quantitative genetics.
9As we will consider the variance to be fixed, we have suppressed this variable in w(.) to ease notation.

10Consider for example the decision to commit a crime where the likelihood of a criminal act to be ‘successful’
depends on the crime rate in the society. (E.g. the detection probability might be lower, the more other agents
become criminals.) If decisions depend on individual risk-preferences, the distribution of these preferences clearly
influences the success of a criminal.
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production: First, only selected individuals produce the next generation of offspring. Second,
partner selection and genetic recombination transforms the post-selection distribution into an
offspring distribution which is again normal: it is characterized by the initial variance σ2 but
a different mean.11 According to this structure, selection will then first lead to a distribution
which deviates from the initial one. Starting from a norm distribution with mean ᾱ, the mean of
the (non-normal) distribution after selection is given by ᾱs from (10). After mating and repro-
duction, however, the distribution of α in the new generation is again normal with F (α, ᾱs, σ

2).
While the variance is preserved, the mean of the distribution changes from ᾱ to ᾱs. The direc-
tion of evolution is therefore determined by selection, characterized in (9) and (10). This allows
us to analyze the evolutionary process in more detail.

From (11) we can derive the change in mean fitness from a marginal change in ᾱ,

∂w̄

∂ᾱ
=

∫
w(α, ᾱ)

∂f(α)
∂ᾱ

dα +
∫

∂w(α, ᾱ)
∂ᾱ

dF (α). (12)

While the first term characterizes the direct change in the mean fitness due to a change in
the composition of the population, the second term depicts the indirect, frequency dependent
fitness impact. From the density of the normal distribution we can easily compute ∂f(α)/∂ᾱ.
Substituting in (12) and rearranging yields

∆ᾱ =
1
w̄

∫
w(α, ᾱ) (α− ᾱ) dF (α). (13)

(For the derivation of (13) see Appendix A.) The right hand side in equation (13) characterizes
pace and direction of the evolutionary process. As w̄ > 0 (per assumption), the direction of
the evolutionary change in the mean trait value ᾱ is determined by the sign of the integral in
(13). Note that the integral term represents only the direct change in mean fitness (the first
term in equation (12)). From (13) therefore follows that the evolution of ᾱ is independent of
the frequency dependent fitness change associated with a change in ᾱ. If the direct fitness
impact is positive (negative), the distribution will evolve towards a higher (lower) mean ᾱ. An
evolutionary equilibrium is reached if ∆ᾱ = 0. Such an equilibrium is characterized by

∫
w(α, ᾱe) (α− ᾱe) dF (α) = 0, (14)

where ᾱe denotes the mean trait value in equilibrium.
11The assumptions underlying this structure are justified by the observation that most metric traits have a

normal distribution, or that the distribution can be transformed to normal by a change in the scale of measurement
(e.g. by log transformation). Similar arguments are incurred to account for the independence of the variance
in respect to the mean, and for that the variance is assumed constant over evolutionary time. For a detailed
discussion see Lande (1976). Compare also Falconer and Mackay (1995), Roff (1997).
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4 Indirect Evolution of Conditional Cooperation

We now apply the method introduced in the previous section in order to study the evolution of
the distribution Φ(θ) and the associated coevolution of cooperation in the model from section
2. As we do not believe that the norm sensitivity θ is genetically determined, we interpret
evolution as a cultural process, related to social transmission and learning mechanisms. Fitness
describes the success of a certain θ-type, i.e. an individual with norm sensitivity θ, in terms of
social status. In the course of evolution, individuals learn about the social status of different
θ-types and accordingly adapt their θ values. In this way, the adaptation process endogenously
shapes preferences. Individual behavior and thereby the level of cooperation within society
evolves indirectly with the change in preferences from one generation to the next.12 The term
generation thereby describes a population with a given distribution of preferences Φ(θ), rather
than a parent and offspring-population in the biological sense.

We deviate from the typical approach in evolutionary economics, which only considers the
economic payoffs as determinant of evolutionary fitness (see e.g. Fershtman and Weiss, 1998;
Mengel, 2006). Apart from the economic payoff y(xi), fitness is also determined by the norm-
based sanctions imposed on free-riders, z(xi, n). If, for example, norm-violators get stigmatized
and are excluded from some social interactions, this results in a decrease of social status.13 The
fitness impact of norm-enforcing sanctions, is thereby assumed to be non-increasing in the share
of norm-violators n. It is less ‘costly’ (in terms of fitness) to free-ride in a population where
norm violations are widespread and social sanctions are less severe.14

Let the fitness for an action xi be given by

w(xi) = y(xi) + z(xi, n) + υ. (15)

The payoff from the public good and some constant, exogenous fitness component is subsumed
in υ. In the following we will neglect υ in our analysis, since including this additional payoff
would not alter our results. Note, however, that we implicitly assume υ to be sufficiently large
to guarantee w̄ > 0.

The basic structure of the adaptation process is the following: An initial generation with
a given distribution Φ(θ) faces the public good game described in section 2. After (finitely)
many repetitions of the game, agents have learned about the social status of different θ-types
and adapt their own θi. The resulting change in the Φ(θ) is assumed to be characterized by
the process from (13). In section 5 we discuss the crucial differences of this approach from
quantitative genetics to an adaptation process according to standard replicator dynamics.

12For other indirect evolutionary approaches, compare e.g. Güth (1995), Bester and Güth (1998), Fershtman
and Weiss (1998).

13Compare e.g. Riedl and Ule (2002) for experimental evidence on social exclusion.
14Note that ostracism, e.g. in form of exclusion from the public good consumption, follows a similar pattern.

Loosing the benefits from the public good in a society with a high level of cooperation represents a more severe
punishment than exclusion in a society white less cooperation. Compare Hirshleifer and Rasmusen (1989).
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We will now study this structure for two scenarios. First, we consider the case, where each
generation coordinates (always) on one social equilibrium state n∗. Then we turn to the case,
where – in the context of multiple equilibria – one generation will face different equilibrium
states. We will call the first scenario a homogenous and the latter a heterogenous environment.

4.1 Adaptation to a Homogenous Environment

Let θ be normally distributed according to θ ∼ φ(θ, θ̄, σ2), and the cumulative distribution is
given by Φ(θ, θ̄, σ2). Substituting for y(xi), z(xi, n) and xi = x(θi, n) from (1), (2) and (5), we
can express individual fitness as

w(θ, θ̄) =




−c for θ > θ̂(n∗)

−s(n∗) for θ ≤ θ̂(n∗)
(16)

where n∗ = Φ(θ̂(n∗), θ̄, σ2) is a stable equilibrium, analogous to (7), for a normal distribution
with mean θ̄ and σ2 is exogenously given.

It is important to note three points here. First, it is only the heterogeneity in actions –
determined by different levels of θ – which results in fitness differences. Within the group of
cooperators respectively free-riders, the heterogeneity in θ does not result in different levels
of fitness. Second, individual fitness as described by (16) is frequency dependent. As the
distribution of θ changes, the share of free-riders n∗ and thereby the fitness costs of a norm
deviation will change. Remember, that the method introduced in section 3 accounts for such
spillovers. Third, we assume that a generation always coordinates on one equilibrium state n∗.
In this sense, we study the adaptation to a homogenous environment. After the adaptation
process, the next generation (with a new distribution of θ) is assumed to coordinate on an
equilibrium state in the close neighborhood of the previous one – even if there exist different
possible equilibrium states.15

The mean fitness is defined by w̄ =
∫

w(θ, θ̄) φ(θ). Using (16), we can express w̄ as

w̄ = −c + (c− s(n∗))

θ̂(n∗)∫

−∞
dΦ(θ) (17)

with the integral expression being equal to n∗ = Φ(θ̂(n∗), θ̄, σ2). Following (13), the intergener-
ational change in θ̄ is determined by

∆θ̄ =
1
w̄

(s(n∗)− c)
(
θ̄n∗ − θ̄∗

)
(18)

15This assumption on equilibrium selection can be justified by the fact that after a small change in the distri-
bution (i.e. in θ̄) there always exists a new stable equilibrium state in the close neighborhood of the previous one.
This ‘close by’ equilibrium may be more salient than more distant equilibrium states and hence becomes a focal
point equilibrium.
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(compare Appendix A) where θ̄∗ represents the mean level of θ among the n∗ agents who free-ride
in an equilibrium,

θ̄∗ ≡
θ̂(n∗)∫

−∞
θdΦ(θ). (19)

As long as 0 < n∗ < 1, there holds θ̄n∗ > θ̄∗. Remember also that w̄ > 0 per assumption
(compare (15)). Hence,

sign
{
∆θ̄

}
= sign {s(n∗)− c} for 0 < n∗ < 1. (20)

From (18) and (20) we can derive:

Proposition 1 (i) An evolutionary equilibrium where cooperators and free-riders coexist is
characterized by s(ne) = c, where 0 < ne = Φ(θ̂(ne), θ̄e, σ2) < 1 constitutes a stable equi-
librium state, supported by a normal distribution with mean θ̄e. (ii) In such an equilibrium,
θ̂(ne) = 1 and all agents have the same fitness w(θ, θ̄e). (iii) An evolutionary equilibrium where
cooperation fails, ne1 = 1, is characterized by a stable equilibrium state ne1 = Φ(θ̂(ne1), θ̄e1, σ2),
supported by a normal distribution with mean θ̄e1.

Proof. The proof of (i) follows immediately from (18). From (4) we know that c = θ̂(n∗)s(n∗)
must hold for any equilibrium state. s(ne) = c then implies θ̂(ne) = 1. Using this in (16) and
substituting for (4) proofs (ii). Part (iii) derives from n∗ = 1 ⇒ θ̄n∗ = θ̄∗. Hence, for ne1 = 1
the term in the last brackets in (18) is zero and ∆θ̄ = 0.

The evolutionary equilibrium described in part (i) of the proposition is characterized by a
positive share of cooperators such that there is no fitness differential between free-riders and
cooperators. In equilibrium, the preferences of agents with θi = θ̂(ne), who are indifferent be-
tween defection and cooperation, coincide with the fitness function from (15) since θ̂(ne) = 1.
In other words, these θ-types are ‘perfectly adapted’ – the norm sensitivity in their preferences
coincides with the fitness impact of sanctions. In addition, there is also an evolutionary equi-
librium where everybody free-rides. While we know from Lemma 1 that n∗ = 1 constitutes
a possible equilibrium state for any distribution, condition (8) has to hold to guarantee the
stability of the equilibrium state. Therefore, any level θ̄ for which (8) holds at n∗ = 1 could be
the mean of the distribution in an evolutionary equilibrium with zero cooperation. By the time
the whole society free-rides, the evolutionary pressure on θ̄ to decline vanishes and the system
reaches a rest point. Note, that we could also describe an evolutionary equilibrium with ne = 0.
For this case, n∗ = 0 ⇒ θ̄n∗ = θ̄∗. Hence, the last bracket term in (18) would equal zero and
∆θ̄ = 0. However, an equilibrium state with n∗ = 0 would only be supported by a distribution
with θ̄ → ∞. We do not include this case in our further analysis, as such a distribution would
violate our assumption A2(i).

Let us now turn to the existence of these different types of equilibria.
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Proposition 2 (i) Iff s(0) > c, there exists an evolutionary equilibrium with 0 < ne < 1. (ii)

For all distributions where (8) holds at n∗ = 1, there exists an evolutionary equilibrium with
ne1 = 1. If c > s(0), this is the only equilibrium.

Proof. (i) Since c > s(n) for n → 1 and s(.) is continuously non-increasing in n, s(0) > c

assures that there exists a level of n where s(n) = c holds. Moreover, we can always find a
distribution φ(θ, θ̄, σ2), a function s(n) and a level c, which supports such an equilibrium share
of free-riders ne. (ii) From Lemma 1 we know that n∗ = 1 is supported by any distribution as
long as A1 and A2(i) hold. Proposition 1(iii) implies that any equilibrium with n∗ = 1 where
(8) holds, constitutes an evolutionary equilibrium ne1. From A1 follows c > s(0) ⇒ c > s(n)
for all n ∈ [0, 1]. It therefore follows from c > s(0) that there cannot exist an equilibrium with
ne < 1, as @ n with s(n) = c.

The result from proposition 2 is straightforward. If the fitness costs of cooperation are higher
than the fitness damage of sanctions even for the state where n∗ = 0, free-riding yields a higher
social status than cooperation for any level of n. Starting from any n∗ < 1, the adaptation
process induces θ̄ to fall and society moves towards an equilibrium with ne1 = 1. If, however,
sanctions are sufficiently strong such that cooperators get a higher fitness than free-riders for
the full-cooperation state n∗ = 0, there must exist an equilibrium state 0 < ne < 1 where both
actions result in the same level of fitness.16

Finally, we address the evolutionary stability of the system. An evolutionary equilibrium
is locally stable if d∆θ̄/dθ̄ < 0 holds in the close neighborhood of θ̄e (respectively θ̄e1).17 If
this is the case, small mistakes in the adaptation process would not affect the evolutionary
equilibrium. Remember, that the stability of an equilibrium state within one generation is given
by (8). In addition, evolutionary stability demands that also the preferences remain stable
between generations. Consider for example a positive shock on θ̄. One can derive from (7)
that an increase in the mean norm sensitivity would result in a drop in the share of free-riders
below ne. The stability condition would then demand that ∆θ̄ < 0, which would provide a
pressure on θ̄ to fall and consequently on n∗ to increase, thereby adapting ‘back’ towards the
initial equilibrium θ̄e respectively ne. In our case, however, an evolutionary equilibrium where
cooperators and free-riders coexist can never be stable.

Proposition 3 An evolutionary equilibrium with 0 < ne < 1 is never stable. In contrast, an
evolutionary equilibrium with ne1 = 1 is locally stable.

Proof. See Appendix B.
16Note, that for the distribution in this evolutionary equilibrium A2(ii) will hold, such that there exists a

(stable) equilibrium state n∗ < 1. (Compare Lemma 1.)
17One could also consider the stability with respect to shocks on n. Note, however, that the fitness payoff can

be interpreted as the average from (finitely) many repetitions of the one-shot game from section 2 within one
generation. As the equilibrium states n∗ within an evolutionary equilibrium must be stable according to (8), we
neglect deviations from n∗. Moreover, in our case d∆θ̄/dθ̄ ≤ 0 implies that the equilibrium would be also stable
after shocks in n.
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Due to assumption A1, s′(n) ≤ 0. Hence, any small deviation from ne would tip the balance
in fitness-payoffs between the two strategies. After a positive shock on θ̄e, the share of free-riders
falls short of ne and we get s(n) ≥ c. Cooperators would be more successful than free-riders,
θ̄ would increase and n∗ would decline further. If, on the other hand, the level of free-riding
exceeds ne, the norm-based sanctions would become less effective and we get c ≥ s(n). Free-
riders, i.e. individuals with low values of θ, have a higher fitness than cooperators; consequently
θ̄ decreases and the system moves into an equilibrium with ne1 = 1. Note that the system would
return to such an equilibrium ne1 after small shocks in θ̄, as in the neighborhood of ne1 = 1
there holds c > s(ne1) since s(n) → 0 for n → 1. Hence, an evolutionary equilibrium with θ̄e1

and ne1 would be stable.

The analysis provided so far yields an unsatisfactory result. While there can exist an evolu-
tionary equilibrium where free-riders and cooperators coexist, such an equilibrium turns out to
be instable. The system either evolves towards an equilibrium where the norm has eroded and
everybody free-rides, or the society would evolve towards full cooperation. As we will discuss in
section 5, this result also carries over if we apply standard replicator dynamics.

4.2 Adaptation to a Heterogeneous Environment

So far, we have studied the adaptation to a homogenous environment. Agents encounter one
particular situation – one equilibrium state – and adaptation shapes their preferences according
to the strength of the social norm in this equilibrium. In reality, however, we typically face
heterogeneous environments, as social interaction can result in quite diverse outcomes. The
level of cooperation varies for different collective action problems, along time and space. We now
discuss a way to capture such heterogeneous environments within our framework. In contrast
to the case of a homogenous environment, we find (presumably) stable evolutionary equilibria
where cooperators and free-riders coexist.

Let us consider an initial distribution such that assumption A2(ii) is fulfilled. In this
case, there exists a multiplicity of equilibria (compare Lemma 1). Within each generation,
the population sometimes coordinates on a stable equilibrium state n∗a, sometimes on n∗b with
n∗j = Φ(θ̂(n∗j ), θ̄, σ

2) for j ∈ {a, b}. Without loss of generality, we assume n∗a < n∗b . The likelihood
at which a generation coordinates on equilibrium state n∗j is exogenously given by 0 < πj < 1.
The actions an agent i with θi chooses according to (5) in the equilibrium states n∗a respectively
n∗b is denoted by

(
xi

a, x
i
b

)
. The corresponding fitness for

(
xi

a, x
i
b

)
is then given by

w
(
xi

a, x
i
b

)
=

∑

j=a,b

πj

(
y(xi

j) + z(xi
j , n

∗
j )

)
. (21)

From n∗a < n∗b and (6) follows θ̂(n∗a) < θ̂(n∗b). Hence, we will observe three different strategies:
On the one hand, agents with θi ≤ θ̂(n∗a) will free-ride in both equilibrium states. Agents with
θi > θ̂(n∗b) on the other hand, will cooperate in both states. A third group of individuals, those
with θ̂(n∗a) < θi ≤ θ̂(n∗b), behaves conditionally cooperative. They cooperate in equilibrium state
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a, where many others cooperate as well, but defect in state b, as more others’ are free-riding.
Making use of (1), (2) and (5), we can express individual fitness in the following way:

w(θ, θ̄) =





−c for θ > θ̂(n∗b)

−πac− πbs(n∗b) for θ̂(n∗a) < θ ≤ θ̂(n∗b)

−πas(n∗a)− πbs(n∗b) for θ ≤ θ̂(n∗a)

(22)

The crucial difference to the case of a homogenous environment is the fact that agents with
intermediate levels of θ obtain a fitness-payoff from two different actions. The success of the
conditional cooperative strategy consists of the cooperation payoff for equilibrium state a plus
the payoff from free-riding in state b.

From (22) we can compute the mean fitness of the population for a given πa and πb = 1−πa,

w̄ = −c + πa (c− s(n∗a))

θ̂(n∗a)∫

−∞
dΦ(θ) + (1− πa) (c− s(n∗b))

θ̂(n∗b )∫

−∞
dΦ(θ). (23)

According to (13), the evolution of θ̄ is then determined by ∆θ̄ = 1
w̄Ψ with

Ψ ≡ πa (s(n∗a)− c)
(
θ̄n∗a − θ̄∗a

)
+ (1− πa) (s(n∗b)− c)

(
θ̄n∗b − θ̄∗b

)
, (24)

and θ̄∗j captures the mean level of θ among the free-riders for equilibrium state n∗j , analogous to
(19).18 The evolutionary dynamics on θ̄ are given by

sign
{
∆θ̄

}
= sign {Ψ} (25)

This leads to the following proposition:

Proposition 4 (i) An evolutionary equilibrium in a heterogenous environment is characterized
by Ψ = 0, where the stable equilibrium states ne

a = Φ(θ̂(ne
a), θ̄

e, σ2) and ne
b = Φ(θ̂(ne

b), θ̄
e, σ2) are

supported by a normal distribution with mean θ̄e. (ii) If ne
b < 1, there holds s(ne

a) > c > s(ne
b).

Proof. Part (i) follows immediately from (25). Part (ii) derives from (24): Note that θ̄n∗j > θ̄∗j
as long as n∗j < 1. Hence, the first term in (24) would be negative if c > s(ne

a). Since ne
a < ne

b,
(6) implies that the second term would be negative as well. We would get Ψ < 0. Therefore
c > s(ne

a) cannot hold in an equilibrium with ne
b < 1. Iff s(ne

a) > c, the first term in (24) is
positive. In order to get Ψ = 0 for ne

b < 1, the second term in (24) must be negative, which
holds for c > s(ne

b).

18The derivation of ∆θ̄ respectively Ψ is analogous to the one of (18). Compare Appendix A.
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The Proposition characterizes an evolutionary equilibrium for a heterogenous environment.
As long as ne

b < 1, the distribution in the evolutionary equilibrium supports two equilibrium
states such that s(ne

a) > c > s(ne
b).

19 In terms of fitness, cooperation dominates free-riding in
equilibrium state a. For state b, however, the opposite holds: Free-riding is more widespread,
and the fitness costs from the norm-enforcing sanctions are lower than the costs of cooperation.
From this follows

Corollary 1 In an evolutionary equilibrium in a heterogeneous environment with ne
b < 1 con-

ditional cooperators have a strictly higher fitness than both, free-riders and cooperators.

Proof. From Proposition 4(ii) we know that s(ne
a) > c > s(ne

b). Using this in (22) proofs the
Corollary.

Figure 2 graphically illustrates an example of such an evolutionary equilibrium. The graph
on the left hand side captures a system with a distribution Φ(θ) and a function θ̂(n) supporting
two stable equilibrium states n∗a < n∗b < 1. The graph on the right hand side depicts the fitness
difference between the strategies for the two equilibria.

Figure 2: Evolutionary Equilibrium in a Heterogenous Environment

From figure 2 as well as from the analysis above (compare Proposition 2) it is clear that
s(0) > c is a necessary condition for an evolutionary equilibrium to exist. In addition, assumption
A2(ii) has to hold in order to guarantee a multiplicity of equilibria. Analogous to before, the
necessary conditions for the local stability of an evolutionary equilibrium is d∆θ̄/dθ̄ < 0. A
formal analysis yields the following result:20

19Another possible equilibrium would be ne
b = 1 and s(ne

a) = c. As this type of equilibrium has very similar
properties as the one discussed in the previous section, we do not discuss this case. Moreover, the equilibrium
condition, Ψ = 0, would also be fulfilled for ne

a = 0 and ne
b = 1 respectively ne

a = 0 and ne
b < 1 with s(ne

b) = c.
Note, however, that assumption A1 implies θ̂(0) > 0. Unless θ̄ →∞, there is always a positive mass of individuals
with θ ≤ θ̂(0), which makes an equilibrium state ne

a = 0 impossible.
20In the Appendix we discuss the conditions in the proposition and show that they can be both fulfilled.
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Proposition 5 Sufficient conditions for the stability of an evolutionary equilibrium with ne
b < 1

are given by ne
a ≤ min {γa; δa} and γb ≤ ne

b ≤ δb, with

γj ≡
θ̂(ne

j)∫

−∞
φ(θ)

(
θ − θ̄e

)2

σ2
dθ,

δj ≡
θ̄∗j
θ̄e

+ φ(θ̂(ne
j)) θ̂(ne

j)
(
1− θ̂(ne

j)
)(

1− θ̂(ne
j)

θ̄e

)
.

Proof. See Appendix B

Since the stability of an evolutionary equilibrium is in general ambiguous, we conducted a
series of numerical simulations. Typically, we found two levels of θ̄ which supported an evolu-
tionary equilibrium.21 The one with the higher mean norm-sensitivity was always stable, even
for cases where the (sufficient) condition ne

a ≤ min {γa; δa} from Proposition 5 was violated.
We are therefore confident, that stable evolutionary equilibria within a heterogeneous environ-
ment exist for a wide range of parameters. This position is also backed by a straightforward
intuition: Small shocks in the adaptation would not change the result from Corollary 1 – con-
ditional cooperation would still perform more successful than the two unconditional strategies.
Since conditional cooperators have intermediate values of θ, preferences in the ‘middle’ of the θ

distribution are more successful and dominate against those with more extreme – either low or
high – values of θ.

The evolutionary dominance of conditional cooperators is the main result of our analysis.
Individuals who lack pro-social preferences – those with low θ values – as well as individuals with
‘overly’ pro-social preferences – i.e. very high values of θ – play one particular strategy, irrespec-
tively of the other agents’ behavior. In a stable evolutionary equilibrium within a homogenous
environment, one of these two strategies will dominate the other. In a heterogeneous environ-
ment, however, when individuals face a ‘good’ state with rather high levels of cooperation as
well as a ‘bad’ state with many free-riders, a third strategy appears: conditional cooperation. In
the adaptation to such a heterogeneous environment, the two unconditional strategies prove less
successful that the conditional strategy. Agents who cooperate in the good but free-ride in the
bad state dominate the free-riders in the former and the cooperators in the latter environment.
The evolutionary pressure to adapt to heterogenous environments provides a simple explanation
for the success of conditional cooperative behavior.

21We focused on the functional form s(n) = λ
`
1− r

`
na/a− nb/b

´´
and parameters in the range c = 1,

λ ∈ (1, 2], r ∈ [1.5, 2.5], a ∈ [1, 2], b ∈ [2, 4], a standard deviation σ ∈ [1.5, 2.5] and πa ∈ (0, 1). The program code
is available from the authors upon request.

16



5 Discussion

5.1 Replicator Dynamics

Would our results still hold if evolution follows a conventional replicator dynamic rather than
the quantitative genetic process? Consider any initial distribution of θ and let the frequency of
a type, φ(θ), evolve according to

φ̇(θ) = φ(θ) (w(θ)− w̄) . (26)

From the analysis in section 4.1 immediately follows that any distribution which supports an
equilibrium share ne with s(ne) = c also constitutes an evolutionary equilibrium according to
(26). If s(ne) = c holds, there are no fitness-differences between free-riders and cooperators
(compare Proposition 1) and we would get w(θ) = w̄ ⇒ φ̇(θ) = 0 for all θ. Similarly, the
stability properties of such an equilibrium with 0 < ne < 1 carries over: any small deviation
from ne would either lead to a break down in cooperation or a move towards full cooperation.

The analysis of section 4.2 suggests that conditional cooperation will always dominate the
two unconditional strategies in a heterogenous environment. This result holds for any evolu-
tionary dynamics. Adaptation according to (26), however, would eliminate all preferences which
induce an unconditional strategy. In an evolutionary equilibrium according to (26), the whole
population would consist of conditional cooperators. All agents would cooperate in one equi-
librium state (n∗a = 0) and free-rider in the other state (n∗b = 1). Any distribution of θ with
φ(θ) ≥ 0 for θ̂(0) ≤ θ ≤ θ̂(1) and φ(θ) = 0 otherwise, which supports these equilibrium states,
would constitute an evolutionary equilibrium. Hence, the dynamics from (26) do (in general)
not lead to a society with one homogenous level of norm sensitivity θ. Once there are only
conditional cooperators (such that the two supported equilibrium states are n∗a = 0 respectively
n∗b = 1), the adaptation process stops.

5.2 Quantitative Genetics

In section 4 we have applied a method from quantitative genetics to a cultural, social learning
process. According to this approach, originally studied by Lande (1976), the trait θ follows
a normal distribution and the frequency of a trait changes according to the fitness-differential
w(θ)/w̄. If the fitness of a θ-type is above the mean population fitness, the frequency of these
types will increase (and shrink otherwise). The resulting (non-normal) distribution is then
transformed back to a normal distribution with a new mean. According to this approach,
adaptation will result in a change in the mean trait value, θ̄, while the other two characteristics
of the distribution – its normal character and the variance – are preserved.

Our motivation to apply this method is technical. The methodology provides a tractable tool
to study the adaptation of a continuous distribution within the model from section 2. A formal
analysis based upon the replicator process from (26) would cause sever technical problems,
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related to the possibility of degenerate distributions and discontinuities in Φ(θ). This would
make the analysis of existence and stability of both, equilibrium states as well as evolutionary
equilibrium distributions quite cumbersome.

Admittedly, the quantitative genetic method has also several limitations.22 Most important,
it implies an imperfect learning process, as the initial variance in θ is maintained during the
course of evolution.23 Hence, by using this method we neglect the case where all agents adapt one
unique θ value (e.g. θ = 1). Note, however, that such a perfectly homogenous population does
in general not constitute a stable evolutionary equilibrium according to the replicator dynamic
from (26) discussed above. In contrast to the quantitative genetic approach, however, the dy-
namic process from (26) does not allow for a co-existence of different strategies, i.e. free-riding,
cooperation and conditional cooperation, in an evolutionary equilibrium within a heterogenous
environment. The heterogeneity in behavioral patterns which emerges in the equilibrium char-
acterized in Proposition 4 is only an artefact of the method which implies a constant variance.
For the case of a normal distribution with infinitesimal small variance, however, the evolutionary
equilibrium according to Proposition 4 would be a population of conditional cooperators (such
that n∗a → 0 and n∗b → 1). For this special case, behavior – but not necessarily the distribution
of θ – in the evolutionary equilibrium would be equivalent for replicator dynamics as well as the
quantitative genetic approach.

5.3 Heterogeneous Environments

This paper introduces a concept of heterogeneous environments, where – in the context of
multiple equilibria – society coordinates with fixed probabilities on one or another equilibrium
state. One could extend and generalize the approach in several directions. First, we could study
heterogenous environments with more than two equilibrium states (in scenarios with a higher
number of stable equilibrium states n∗). Such an extension would somewhat complicate our
analysis, since there would be more than 3 behavioral patterns. In particular, there would be
different forms of conditional cooperation. E.g. for the case of three equilibria, n∗a < n∗b < n∗c ,
we would observe conditional strategies

(
xi

a, x
i
b, x

i
c

)
with (1, 0, 0) as well as (1, 1, 0). Our main

result – the fitness dominance of conditional cooperation over unconditional behavior – would
not be effected. Which of the two conditional cooperative strategies yields a higher fitness, only
depends on the comparison of a free-riders’ fitness costs with the costs for cooperation in the
three different equilibrium states.

Another possible extension is the endogenous formation of the likelihood πj . We could relate
the probability to face one particular equilibrium state to the size of the basin of attraction for
this equilibrium n∗j . From the discussion in section 2 it is clear, that a stable equilibriums’ basin

22One crucial limitation of the method would be the case with evolutionary pressure on low and high θ-types
to grow. This would suggest an evolution towards a bimodal distribution, which is excluded by assumption in
Lande’s approach. However, such a disruptive evolution cannot occur in our framework.

23One could justify this implication by a systematic noise embedded in the social learning process. If the errors
in the adaptation process are normally distributed and remain constant during evolution, these deviations from
perfect adaptation in θ would maintain a normal distribution Φ(θ).
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of attraction is defined by the position of the surrounding, instable equilibria (fixed points).
For the case of two stable equilibria depicted in the example from panel (a) of figure 1, it is
the location of the instable equilibrium n∗c which separates the distinct basins of attraction. As
an increase in θ̄ would shift the Φ(θ)-curve upwards, the level of free-riding for the instable
fixed point would increase. Hence, with an increase in the mean norm sensitivity, the basin
of attraction for the equilibrium with a low level of free-riding, n∗a, becomes larger and the
one of the other equilibrium n∗b shrinks. Accordingly, the probability πa (πb) would increase
(decrease) in θ̄. This effect would only quantitatively alter the properties of an evolutionary
equilibrium in a heterogeneous environment. Endogenous probabilities πj , however, could add
further restrictions for the stability of an evolutionary equilibrium.

6 Conclusion

While the impact of heterogenous ‘habitats’ on evolutionary processes is well studied by biolo-
gists,24 this idea has been so far neglected in evolutionary economics. In this paper we take a first
step to close this gap in the literature. We develop a model of voluntary public good provisions
in the context of a social norm for cooperation. As the power of the norm-enforcement depends
on the level of cooperation, there is scope for multiple equilibria. Society may coordinate on
an equilibrium with a high level of cooperation, where norm deviations would result in severe
sanctions, or on a state with widespread free-riding and weak norm-enforcement. We link this
multiplicity of equilibria to the idea of heterogenous habitats, in the sense that the evolutionary
success of a certain norm-sensitivity, respectively the behavior induced by it, is evaluated for
different equilibria of the game. Following an indirect evolutionary approach, preferences – i.e.
individual norm-sensitivities – are then endogenously shaped according to their performance in
both, equilibrium states with a strong norm as well as states with a weak norm. In such heteroge-
nous environments, conditional cooperation is more successful than any unconditional strategy.
In the ‘cooperative’ environment, conditional cooperators follow the norm and avoid the pun-
ishment free-riders incur. In the environment where the norm is weak and sanctions do hardly
play a role, conditional cooperators reap the same payoff as free-riders, which dominates that of
an (unconditional) cooperator. Hence, the preferences underlying conditional cooperation are
well adapted to heterogeneous environments. An intermediate level of norm sensitivity allows
individuals to react flexibly to different social situation. Thereby, they dominate unconditional
strategies, which are specialized on one particular condition.

Members of modern human societies typically interact in various cooperation problems where
cooperation fails sometimes but works quite well in other situations. Our analysis suggests
that exactly this heterogeneity in our social environments is a driving force in the evolution of
conditional cooperation.

24Among many others, see e.g. Levins (1968), Maynard Smith and Hoekstra (1980).
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Appendix A – Section 3

For the density of the normal distribution, f(α), one can easily derive

∂f(α)
∂ᾱ

= f(α)
α− ᾱ

σ2
. (A.1)

Making use of this term in (12) and rearranging, we get

∂w̄

∂ᾱ
=

1
σ2

∫
[α w(α, ᾱ) f(α)− ᾱ w(α, ᾱ) f(α)] dα +

∫
∂w(α, ᾱ)

∂ᾱ
dF (α). (A.2)

From (11) respectively (10) follows that the first expression in the first integral equals ᾱsw̄, and
the second expression is ᾱw̄. We arrive at

∂w̄

∂ᾱ
=

w̄

σ2
(ᾱs − ᾱ) +

∫
∂w(α, ᾱ)

∂ᾱ
dF (α). (A.3)

Rearranging and substituting for (9) yields

∆ᾱ =
σ2

w̄

(
∂w̄

∂ᾱ
−

∫
∂w(α, ᾱ)

∂ᾱ
dF (α)

)
(A.4)

which is equivalent to

∆ᾱ =
σ2

w̄

∫
w(α, ᾱ)

∂f(α)
∂ᾱ

dα. (A.5)

Making use of (A.1) we finally get

∆ᾱ =
1
w̄

∫
w(α, ᾱ) (α− ᾱ) dF (α). (A.6)

Appendix A – Section 4

The mean fitness is given by

w̄ = −s(n∗)

θ̂(n∗)∫

−∞
dΦ(θ)− c

∞∫

θ̂(n∗)

dΦ(θ). (A.7)

As Φ(θ̂(n∗)) = n∗, we can rearrange w̄ and get

w̄ = − (1− n∗) c− n∗s(n∗). (A.8)

From this follows (17).

As we have demonstrated in the section 3, only the direct fitness impact of a change in θ̄

is important for the evolution of this variable. The indirect effect – related to the frequency
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dependent fitness from s(n) – is irrelevant. Hence, we follow (13) and derive

∆θ̄ =
σ2

w̄
(c− s(n∗))

θ̂(n∗)∫

−∞

∂φ(θ, θ̄, σ2)
∂θ̄

dθ. (A.9)

For the density of the normal distribution we get analogously to (A.1)

∂φ(θ, θ̄, σ2)
∂θ̄

= φ(θ)
θ − θ̄

σ2
. (A.10)

With this, we can rewrite ∆θ̄ as

∆θ̄ =
1
w̄

(s(n∗)− c)

θ̂(n∗)∫

−∞
φ(θ)

(
θ̄ − θ

)
dθ, (A.11)

where the first term in the integral is equal to n∗θ̄. The second expression in the integral depicts
the mean level of θ for agents with θi ≤ θ̂(n∗). Using (19) we finally arrive at (18).

Appendix B

Proof of Proposition 3. From (A.11) we get

d∆θ̄

dθ̄
=

1
w̄

(s(n∗)− c)

θ̂(n∗)∫

−∞
φ(θ)− φ(θ)

(
θ − θ̄

)2

σ2
dθ

− 1
w̄2

[
∂w̄

∂θ̄
+

∂w̄

∂n∗
∂n∗

∂θ̄

]
(s(n∗)− c)

θ̂(n∗)∫

−∞
φ(θ)

(
θ̄ − θ

)
dθ (A.12)

+
1
w̄


s′(n∗)

θ̂(n∗)∫

−∞
φ(θ)

(
θ̄ − θ

)
dθ + (s(n∗)− c)

∂θ̂(n∗)
∂n∗

φ(θ̂)
(
θ̄ − θ̂(n∗)

)

 ∂n∗

∂θ̄

where we made use of the Leibnitz Rule of integral differentiation to derive the last term in the
third line’s squared brackets. Rearranging and making use of (4), (7) and (19) we arrive at

d∆θ̄

dθ̄
=

1
w̄

(s(n∗)− c)


n∗ −

θ̂(n∗)∫

−∞
φ(θ)

(
θ − θ̄

)2

σ2
dθ




− 1
w̄2

[
∂w̄

∂θ̄
+

∂w̄

∂n∗
∂n∗

∂θ̄

]
(s(n∗)− c)

(
θ̄n∗ − θ̄∗

)
(A.13)

+
1
w̄

[
(
θ̄n∗ − θ̄∗

)
+ (s(n∗)− c)

θ̂(n∗)
s(n∗)

φ(θ̂)
(
θ̂(n∗)− θ̄

)]
s′(n∗)

∂n∗

∂θ̄
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From Proposition 1 we know that an evolutionary equilibrium with 0 < ne < 1 is characterized
by s(ne) = c. Therefore, the expressions in the first and the second line of (A.13) equal zero
for such an equilibrium ne. Using (7), one can easily show that ∂n∗/∂θ̄ ≤ 0 for any stable
equilibrium state n∗. As s′(n∗) ≤ 0 and θ̄n∗ > θ̄∗ for 0 < n∗ < 1 it follows that the expression
in the third line of (A.13) must be non-negative and we get d∆θ̄/dθ̄ ≥ 0 for any evolutionary
equilibrium with 0 < ne < 1. Such an evolutionary equilibrium is never stable.
Let us now consider an evolutionary equilibrium with ne1 = 1. Since θ̂(ne1) → ∞ for ne1 = 1,
the integral term in the first line of (A.13) equals the variance σ2 and the term in the squared
brackets becomes zero. For ne1 = 1 there also holds θ̄n∗ = θ̄∗ and the expression in the second
line of (A.13) also equals zero. From s(ne1) → 0, θ̂(ne1) → ∞ and θ̄n∗ = θ̄∗ follows that the
term in the third line’s squared brackets is strictly negative. Together with ∂n∗/∂θ̄ ≤ 0 and
s′(n∗) ≤ 0 this implies that d∆θ̄/dθ̄ < 0 holds for ne1 = 1.

Proof of Proposition 5. Analogously to (A.13) we can derive from (23) and (24)

d∆θ̄

dθ̄
=

1
w̄

∑

j

πj

(
s(n∗j )− c

)

n∗j −

θ̂(n∗j )∫

−∞
φ(θ)

(
θ − θ̄

)2

σ2
dθ




− 1
w̄2


∂w̄

∂θ̄
+

∑

j

πj
∂w̄

∂n∗j

∂n∗j
∂θ̄


Ψ (A.14)

+
1
w̄

∑

j

πj

[
θ̄n∗j − θ̄∗j +

(
s(n∗j )− c

) θ̂(n∗j )
s(n∗j )

φ(θ̂(n∗j ))
(
θ̂(n∗j )− θ̄

)]
s′(n∗j )

∂n∗j
∂θ̄

Since in an evolutionary equilibrium Ψ = 0 (Proposition 4), the second line of (A.14) equals
zero. In an equilibrium as characterized in Proposition 4(ii), i.e. where ne

b < 1, there holds
s(ne

a) > c > s(ne
b). If the squared bracket term in the first line is positive for equilibrium state

ne
b and negative for ne

a, the expression in the first line of (A.14) is unambiguously negative. The
two corresponding conditions are

ne
a ≤

θ̂(ne
a)∫

−∞
φ(θ)

(
θ − θ̄e

)2

σ2
dθ, and ne

b ≥
θ̂(ne

b)∫

−∞
φ(θ)

(
θ − θ̄e

)2

σ2
dθ. (A.15)

(Note, that the integral term in (A.15) takes values in the range (0, 0.5] for 0 < ne
a ≤ 0.5 and

[0.5, 1) for 0.5 ≤ ne
a < 1.)

Let us now turn to the third line of (A.14). Remember that s′(n∗j ) ≤ 0 and ∂n∗j/∂θ̄ ≤ 0
since both equilibrium states n∗j are stable as characterized by (8). It is therefore sufficient for
the expression in the third line to be negative, if the term in the squared brackets is negative
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for both equilibrium states. Rearranging, we get the following condition

ne
j ≤

θ̄∗j
θ̄

+ φ(θ̂(ne
j)) θ̂(ne

j)
(
1− θ̂(ne

j)
) (

1− θ̂(ne
j)

θ̄

)
, (A.16)

where we have substituted for (4). The first term on the right hand side of (A.16) is positive for
any n∗ > 0. Moreover, for n∗a ≤ 0.5 there holds θ̂(n∗a) ≤ θ̄. Since 1− θ̂(n∗j ) = (s(n∗j )− c)/ s(n∗j ),
s(n∗a) > c implies that the second term on the right hand side is also positive for n∗a ≤ 0.5. For
an equilibrium state n∗b ≥ 0.5 we know that θ̂(n∗b) ≥ θ̄. From s(n∗b) < c then follows that the
right hand side is again strictly positive. (As the first term approaches unity for n∗b → 1 and
since the second term is strictly positive, the right hand side of (A.16) could be strictly larger
than unity for high levels of n∗b . For n∗a → 0, the second term will be positive, as θ̂(0) > 0 holds
due to assumption A1. Hence, condition (A.16) should hold for extreme equilibrium levels of
n∗j .)
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